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ABSTRACT

During the first year of Au+Au collisions at the Relativistic Heavy-Ion Collider

(RHIC) at Brookhaven National Laboratory, 130 A·GeV collisions were observed and

analyzed in the hopes of finding some signal of a new state of matter. This new

state of matter, the quark-gluon plasma or QGP, can be described as a deconfined

state of freely interacting quarks and gluons within a certain volume of the collision

fireball. Since the lifetime and size of this state are both small (∼ 10 fm) a direct

observation is not possible. Instead, many different indirect methods are used in order

to extract specific information about the source from the final state particles which

are eventually detected.

One of these methods, HBT interferometry, provides a means of determining the

spatial extent and dynamical properties of the freeze-out region, after which the

final-state particles have stopped interacting, by examining correlations between pairs

of particles within an event. Two-particle interactions include those caused by the

Coulomb and strong nuclear forces, however it is the quantum statistics governing

the behavior of identical particles which leads to a relationship between the spatial

properties of the source and the momentum correlations between pairs of particles.

In this thesis, one of the central assumptions of HBT interferometry is examined,

that of the chaoticity of the freeze-out region. Particles emitted from the freeze-out

region carry an intrinsic quantum particle production phase, much like the initial
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phase of an electromagnetic wave. If these phases are random for each outgoing par-

ticle, the source is said to be fully chaotic. Using three-particle HBT interferometry,

it is possible to obtain a measure of this chaoticity, and in so doing verify the results

of two-particle HBT.
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CHAPTER 1

INTRODUCTION

The U.S. department of energy budget in 2001 was $21 billion [5], out of which

more than $1 billion was spent on particle collider projects. One of these particle

colliders is located at Brookhaven National Laboratory on Long Island, New York.

Called the Relativistic Heavy-Ion Collider (RHIC), its purpose is to accelerate fully

ionized gold atoms to an energy of 100 GeV/nucleon, or about 0.99995 times the

speed of light, and steer the ions into two countercirculating beams. The resulting

collisions, several thousand of which occur every second and vary from head-on to just

grazing, results in a high energy density fireball which produces up to several thousand

subatomic particles. This residual radiation is viewed through the use of specialized

detectors which detect several different types of particles. The reconstructed tracks

of these particles give information about their momenta after being emitted from the

collision region and interacting with other particles, as well as the energy deposited

(dE
dx

) by the particles as they pass through the detection medium. It is up to the

experimental physicist to extrapolate from this collection of particle momenta and

dE
dx

data, and reconstruct the earliest times after the collision, when nucleons from

the gold ions were compressed and heated to extreme levels.
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Hadronic matter (protons and neutrons) consists of fundamental particles called

quarks. Quarks interact through the electromagnetic force and the strong force, the

latter of which is governed by the laws of quantum chromodynamics (QCD). One of

the most surprising results of QCD is that the color strong field between individual

quarks increases in energy as the distance of separation of the quarks is increased.

Quarks can therefore only exist as composite hadrons, as the energy to separate two

quarks would be infinite. Current nuclear theory suggests that at high enough energy

densities, the nucleon overlap puts a large number of quarks within a small enough

distance that they behave as free particles [6]. At high temperatures, colored gluons

form a plasma which Debye screens the color of the quark [7]. Debye screening of color

charge is similar to that of electromagnetic charge. In the electromagnetic case the

Coulomb potential draws electrons close to a positive ion, thus screening the charge

of that ion from other neighboring ions. In the case of color charges, colored quarks

and gluons effectively screen the charge of other quarks, thus reducing the long-range

confining potential of the strong force. It is predicted that a combination of high

energy and density can be produced in a high-energy heavy-ion collision sufficient to

form a state of matter, termed a Quark-Gluon Plasma (QGP), in which quarks and

gluons act as free particles.

Figure 1.1 shows the phase diagram of nuclear matter with respect to tempera-

ture and density (also represented as baryon chemical potential µB). The boundary

between hadronic matter and the QGP state is given by lattice QCD simulations,

which predict a critical temperature for a phase transition at ∼170 MeV for µB =

0. Phenomenology must be used to extend the graph beyond µB = 0. Two natu-

ral phenomena are believed to have crossed this phase boundary: Just after the Big

2



Bang, in which the temperature and energy density of the universe far exceeded that

of normal nuclear matter; and in neutron stars, whose cores consist of highly dense

nuclear matter. Relativistic heavy-ion collisions will hopefully provide a reproducible

method to create QGP matter. Successful confirmation of the creation of a QGP is

of great interest to physicists as it will confirm some of our understanding of QCD.

Although theory predicts that current particle colliders should be powerful enough to

create a QGP, if only for a short period of time, experimental methods to confirm its

observation are still being debated. Heavy-ion collider programs have been running

since the 1980s at experiments such as the AGS at Brookhaven National Lab and

the SPS at CERN, with the goal of increasing the energy of colliding particles and

determining conclusively the successful detection of the QGP.

At RHIC, a QGP is expected to last less than 10-21 seconds. As the QGP expands

and cools, quarks and gluons “freeze” into hadrons and are expelled outward. At the

same time, the energy density inside the QGP decreases, and soon the binding energy

between quarks and gluons becomes the dominant potential. This results in a mixed

phase of quarks and hadrons, which finally freezes out completely into hadrons. One

goal of heavy-ion physics is to determine the properties of this freeze-out surface,

such as its spatial extent and momentum profile. This can be accomplished with

Hanbury-Brown Twiss (HBT) interferometry, a type of intensity interferometry in

which momentum correlations between particles are used to extract a parameteriza-

tion of the freeze-out surface as a function of space and time.

Chapter 2 describes the STAR experiment and main tracking detector, the TPC.

Another detector, the SVT, is the focus of §2.5. Although this detector was only op-

erational during the second year of physics running, its importance to many physics
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Figure 1.1: Phase diagram of nuclear matter. The points represent experimental
measurements of the temperature and baryonic chemical potential for three

experiments. As the collision system expands and cools, it follows the likely path
given by the lines connecting the points. The hatched area represents a transition

region between a deconfined QGP state and a hadron gas state.
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programs, as well as this author’s extensive involvement during its construction, war-

rant a closer look. Chapter 3 highlights the theory of HBT interferometry, its im-

plementation in an experimental heavy-ion physics setting, and the processing that

is involved in extracting the signal from other final-state interactions and detector

effects. Some results from the two-pion analysis performed by the STAR HBT group

are shown. Chapter 4 continues the analysis of two-particle HBT correlations to de-

velop the theory of three-pion correlations and their link to source chaoticity. Results

from the first year of STAR data are shown. Chapter 5 finishes with some conclusions.
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CHAPTER 2

THE RELATIVISTIC HEAVY-ION COLLIDER AND THE
STAR EXPERIMENT

All analysis herein used data collected from the first of two separate run periods

at the Relativistic Heavy-Ion Collider (RHIC) at Brookhaven National Laboratory.

This collider was designed to accelerate and collide gold ions to a total energy of

√
sNN = 200 GeV at four locations around a 1 km diameter ring of superconducting

magnets. From June to September 2000, approximately one million minimum-bias

triggered events were recorded from a Au+Au beam of
√

sNN = 130 GeV at the

STAR (Solenoidal Tracker at RHIC) detector [8]. This detector consists of a large

conventional solenoidal magnet with a maximum field strength of 0.5 T, and several

detector systems. During the first year, the magnet was run at half-strength, or 0.25

T. The detector systems during Year-1 consisted of the Time Projection Chamber

(TPC), which was the main tracking detector used in all the Year-1 analysis, the Ring

Imaging Cherenkov Hodoscope (RICH), and one prototype detector (ladder) for the

Silicon Vertex Tracker (SVT). A picture of the full detector can be seen in Figure 2.1.

Year-2 operation began in July 2001 with the first collisions at
√

sNN = 200 GeV, and

was completed at the end of January 2002. During the month of January, the collider

program switched to running polarized protons instead of gold. The detector systems
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Figure 2.1: The STAR Detector. The primary detector used in the Year-1 HBT
analysis was the Time Projection Chamber.

that were in use at this time included the complete SVT, which will be discussed

at length in §2.5, a forward TPC (FTPC), a partial installation of electromagnetic

calorimeters (BEMC), and a time-of-flight detector (TOF). Twenty million collision

events were recorded during this run, greatly increasing Year-1 statistics.
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Figure 2.2: The RHIC Complex, starting from the heavy-ion source at the Tandem
Van de Graaff to the main RHIC ring at top, where ions circulate around a 2.4 mi

beamline at energies of up to 100 GeV/nucleon.

2.1 RHIC

The accelerator complex at Brookhaven has a long history, from the pioneering

achievements at the Alternating Gradient Synchrotron (AGS) to the installation of a

high-energy particle collider system in RHIC. The components of this machine reflect

the history of collider development at BNL. In Figure 2.2, the layout of RHIC is

shown from the production of a gold beam at the Tandem Van de Graaff (TVDG) to

acceleration to full energy at the main RHIC ring.

Partially ionized gold atoms are emitted from a source, such as a high temperature

gold filament. The positively charged ions are accelerated through the Tandem Van

de Graaff’s two 15 million volt electrostatic accelerators, and are passed through thin

sheets of gold foil, which further ionize the gold atoms.
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Ions exiting the TVDG enter the AGS, where they are accelerated around a 843-

foot diameter synchrotron to a total energy of 11 GeV/nucleon. The AGS employs

a strong focussing technique with its 240 magnets situated along the acceleration

ring. Each magnet successively alternates its magnetic gradient inward and outward

from the ring, allowing the beam to be focussed in both the horizontal and vertical

direction. Ions in the AGS are stripped of all remaining electrons, leaving fully

ionized bare nuclei. Once the nuclei are at full AGS energy, they are diverted to a

transfer line to the main RHIC ring, where a switching magnet injects some ions in

a clockwise-circulating ring and others to a counterclockwise-circulating ring.

At six points along the main RHIC ring the clockwise and counterclockwise beam

lines converge to allow the ion beams to intersect and collide via steering magnets.

Along this ring ions are accelerated from 11 GeV/nucleon to the top RHIC energy: 70

GeV/nucleon during Year-1 and 100 GeV/nucleon during Year-2. Figure 2.3 shows

the ring and the four experiments which are currently operating. The STAR experi-

ment is set up at the 6 o’clock location, with its main tracking detector and magnet

centered at the interaction point. The main components of the STAR detector are

described in the next few sections.

2.2 STAR Magnet

Comprising over 90% of the total mass of the STAR detector at 1100 tons, the

main STAR detector magnet consists of a 130-turn aluminum solenoid conductor

which provides 0.5 T of field when energized to a current of 4500 A. The field flux is

returned through 73 ton iron poletips at either end of the solenoid, and then through

a set of 30 18-ton flux return bars which are situated on the cylindrical surface of
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Figure 2.3: Locations of various experiments on the RHIC ring.

the solenoid. The purpose of the flux return is to keep the field uniform within the

volume of the solenoid, where the main detector components of STAR are located.

The STAR magnet serves two purposes with regard to the experimental mission of

detecting particles emanating from a heavy-ion collision. First, it allows the momenta

and sign of charged particles to be calculated by measuring the curvature of the

particle track as it passes through the field volume. Second, the B-field produced

by the STAR magnet is oriented in the beam direction, as is the drift field used in

the TPC. As explained in the next section, this reduces the dispersion in ionization

produced in the TPC, increasing the position resolution of that detector.
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During Year-1 running, the STAR magnet was run at half field, or 0.25 T. Year-2

operations used several different field settings, including full field at 0.5 T, half field,

and reversed full field.

2.3 Trigger

Au+Au bunch crossings during Year-1 running occurred at around 9.37 MHz,

which for the highest luminosity beams was close to the interaction rate. Several

factors precluded the possibility of recording events at this high frequency, including

the speed at which the physics detectors could begin their digitization and acquisition

cycles, and the bandwidth restrictions imposed by the data acquisition infrastructure.

The maximum rate at which events can be acquired and stored onto tape due to these

limitations is ∼100 Hz (though during Year-1 the rate was typically 5 Hz).

To trigger on the events of use to the heavy-ion physics program, specialized

high speed detectors are employed which select Au+Au collisions based upon the

number and distribution of particles created. The two main trigger detectors used

during Year-1 are the Central Trigger Barrel (CTB) and the Zero Degree Calorimeter

(ZDC).

2.3.1 Central Trigger Barrel

The CTB is a cylindrical arrangement of 240 scintillator slats positioned just

outside the outer diameter of the TPC, as seen in Figure 2.4. The scintillators are

connected to photomultiplier tubes which give a response proportional to the number

of charged particles which interact with the scintillator medium. This provides a

means of selecting events of a certain multiplicity, or number of outgoing particles

generated in the collision (as defined within the solid angle that is covered by the
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CTB). The full CTB covers 360◦ in φ and from −1 < η < 1 in pseudorapidity. In

heavy-ion physics, the rapidity parameter y describes the momentum of particles in

the direction of the beam via the following equation:

y =
1

2
ln

(
E + pz

E − pz

)
. (2.1)

Here, pz is the momentum of the particle in the beam direction, and E is the total

energy of the particle. In a beam-on-beam collision, where the center-of-momentum

(COM) frame is the same as the lab frame, particles with a positive pz have a posi-

tive rapidity, and vice-versa. Particles moving perpendicular to the beam have zero

rapidity. Under a Lorentz boost, the rapidity is easily recalculated by adding the

rapidity of the boost frame. For this reason, rapidity differences are invariant under

a Lorentz transformation. The pseudorapidity η provides a more convenient way to

calculate an approximation to y in the limit that the momentum of the particle is

much greater than its mass. It is defined as

η = −ln tan

(
θ

2

)
, (2.2)

where θ is simply the angle of the particle track relative to the beam axis (also called

the polar angle). Equation (2.2) is obtained from equation (2.1) by setting the mass

of the particle to zero.

2.3.2 Zero Degree Calorimeters

All detectors at RHIC are outfitted with a pair of calorimeters capable of detecting

uncharged particles emitted in the beam direction [9]. These ZDCs are placed 18

meters on either side of the interaction region along the beam pipe, and use the

Cherenkov light generated by particles passing through tungsten plates to create a
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Figure 2.4: Central Trigger Barrel (CTB) in STAR
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signal in photomultiplier tubes. Since the ZDCs are located along a line tangent to the

beam at the interaction region, they are sensitive mostly to the neutrons dislodged

from the Au nuclei during a collision. Protons from the nuclei are swept away by

the same magnets which hold the beam in the collider ring. These neutrons are

called spectator neutrons, as they do not interact with other nucleons but instead

pass through the collision region, following the same momentum direction as that of

the colliding nuclei.

As in the CTB, the signals from the ZDCs are proportional to the number of

neutrons interacting with the detection medium, and these signals can be used as a

way to trigger on collision centrality by measuring the number of spectator neutrons.

A central head-on collision is characterized by a large number of nucleon-nucleon

interactions, which leave very few spectators. In contrast, a peripheral collision would

leave many spectators to be detected by the ZDCs, producing an anti-correlated

signal to the number of protons and neutrons interacting in the Au+Au collision. By

comparing the arrival times of signals coming from the two ZDCs, it is also possible

to determine the location of the interaction vertices in the beam direction.

2.3.3 Trigger Types

The two main trigger types used during Year-1 were named “Hadronic Min Bias”

and “Central”. The Min Bias trigger employed only the signals from the two ZDCs,

ZDC East and ZDC West, and issued a trigger when the coincidence signal from

the two ZDCs exceeded a certain threshold, ∼40% of the single neutron peak. The

Central trigger used the CTB as well as the ZDC, providing a means to cut on the

total event multiplicity. As seen in Figure 2.5, a low signal from the CTB (low
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Figure 2.5: Plot of Coincidence ZDC signal vs. CTB summed signal. The central
event trigger accepted only events with a large (> 6000 counts) CTB signal.

multiplicity, or high impact parameter) would still produce a large coincidence signal

in the ZDC due to spectator neutrons continuing undeflected down the beam pipe.

Small impact parameter collisions mean more of the Au nucleons interact, reducing

the signal in the ZDC but increasing the overall multiplicity (and thus the CTB

signal). Accepting events with high CTB signal and low ZDC signal constituted the

basis for the Central trigger. For this trigger it was still necessary to have a minimum

ZDC coincidence signal due to beam-gas events, which occur at a rate of ∼100 Hz at

maximum luminosity.
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Figure 2.6: Time Projection Chamber (TPC) - The main tracking detector at STAR

2.4 Time Projection Chamber

The main tracking detector used during the first year of physics running at STAR

was the Time Projection Chamber, or TPC. This detector, shown schematically in

Figure 2.6, consists of a cylindrical gas vessel 4.2 meters long, with an outer radius

of 2 meters, and an inner radius of 0.5 meters. The chamber is split in the middle

(longitudinally) by a central membrane cathode, which is charged to 28 kV during

operation. The inner and outer cylindrical surfaces have conducting rings which

run from the cathode to either end of the TPC, and are connected together with a

resistor chain which steps the voltage from 28 kV down to 0 V at the end cap. A

particle passing through the detector ionizes the P10 (10% methane) gas in the TPC,

producing electrons along the path the particle takes through the detector.
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2.4.1 Detector Operation

Due to the electric field gradient, ionization electrons produced when a particle

passes through the TPC drift toward either end cap of the TPC, depending on which

side of the central membrane the ionization is located. At the end cap are located sev-

eral multi-wire proportional chambers (MWPCs) arranged in segments. The MWPC

consists of several small diameter (20 µm) wires placed parallel to each other, and

oriented such that a straight track in the radial direction would be perpendicular to

the wires. These wires are held at a high electric potential, and as the drift elec-

trons approach these wires they are accelerated to such high energies that they ionize

atoms in the surrounding gas, producing an avalanche cascade of electron-ion pairs.

The avalanche charge is proportional to the initial amount of ionization, allowing the

energy loss per unit distance of the initial particle (§2.4.2) to be measured along the

length of the track.

The original track position is calculated by measuring the signal on readout pads

located behind the anode wire grid. The positive ions produced in the avalanche

create an image charge on adjacent pads, which are used collectively to locate the

2-dimensional position of that portion of the particle track. Pads are grouped in

circular “rows” at constant radial distances. Each row is capable of acquiring one

2-dimensional position for a single track, and this position is called a “hit”. The TPC

has a total of 45 pad rows extending from the 0.5 m inner radius to the 2.0 m outer

radius, so that no track can have more than 45 hits. The third dimension of each hit

is determined by measuring the drift time of the ionization electrons to the TPC end

caps.
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2.4.2 dE
dx

Particles emitted from the freeze-out surface of the interaction region eventually

stop interacting with other particles and move along trajectories with relatively con-

stant momentum. Aside from particles that decay before exiting the detector, these

particles can be completely described by their momentum and charge. Using the

curvature of the tracks due to the Lorentz force, the transverse momenta are calcu-

lated, and a helical fit to the tracks gives the remaining longitudinal component to

the momenta.

Particle identification requires knowledge of both the mass and charge. Since

nearly all charged particles observed in the TPC are of charge +1 or -1, it is a simple

matter of identifying the charge of a particle via the direction that the particle bends

in the magnetic field. The mass of a particle is measured indirectly through the

energy loss of the particle as it interacts with the TPC gas. Using a classical model of

a charged particle interacting through the electrostatic force with an atomic electron,

the energy lost by the particle as it passes an electron is found to be [10]

∆E (b) =
2z2e4

mev2b2
, (2.3)

where z is the charge of the interacting particle, b is the distance between the atomic

electron and the particle trajectory and v is the particle velocity. The key in equation

(2.3) is that energy loss is only dependent on the particle’s velocity. When relativistic

effects are taken into account, the differential energy loss of a particle moving through

an absorbing material is found through the Bethe-Block formula:

−dE

dx
= 2πNar

2
emec

2ρ
Z

A

z2

β2

[
ln

(
2meγ

2v2Wmax

I2

)
− 2β2 − δ − 2

C

Z

]
. (2.4)
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Here, ρ, Z, and A are the density, atomic number and atomic weight of the absorbing

medium, respectively. re is the classical electron radius and Na is Avogadro’s number.

δ is a density correction that accounts for those atomic electrons which are shielded

from the electric field due to polarization of atoms along the path of the particle. I

represents the mean excitation potential, an empirical constant that gives the average

orbital frequency of the absorbing medium. Wmax is the maximum energy transfer in a

single collision. Finally, C, the shell correction, modifies the value of the Bethe-Bloch

formula for those incident particles whose velocity are on the order of or smaller than

the orbital velocity of bound electrons of the absorbing medium. Again, equation

(2.4) is dependent only on the velocity of the incident particle, so that particles with

the same momentum but different mass can be distinguished by how much energy

they deposit in the absorbing medium according to equation (2.4).

The TPC records dE
dx

information by measuring the avalanche charge generated

in the MWPC as described in §2.4.1 along the length of the particle track. A plot

of dE
dx

vs. momentum is shown in Figure 2.7. Plotted in this figure are the curves

obtained from equation (2.4) assuming the masses for the particles listed. From this

plot the various particle types are easily distinguished at low momentum. Particle

ID in software is accomplished by accepting only those particles which are within

a certain number of standard deviations of the predicted Bethe-Block curve for the

chosen particle type. High momentum particles are impossible to distinguish via this

method since as a particle moves faster through an absorbing medium, it looses less

energy per distance until it reaches a point of minimum ionizing, in which all particles

of the same charge have the same dE
dx

loss for a given momentum.
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Figure 2.7: dE
dx

vs. momentum for tracks reconstructed in the STAR TPC during
Year-1.

2.4.3 Effect of Magnetic Field on Electron Diffusion

As noted in §2.2, the main STAR magnet is instrumental in reducing electron

ionization diffusion in the TPC. The magnetic field is oriented in the same direction

as the drift E-field, so that ionization electrons which drift through the volume of the

TPC are confined to helical trajectories about the drift direction. This has the effect

of reducing diffusion by up to a factor of 1
10

. Diffusion in the drift electrons results in

a loss of hit position resolution, and thus a loss in momentum resolution.

2.5 Silicon Vertex Tracker

During the installation period in February 2001 the innermost detector in STAR

was installed inside the inner radius of the TPC. The active area of this detector is
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composed of square silicon wafers which act as solid state drift detectors. By virtue of

its location, the SVT is designed to accurately measure particles close to the primary

vertex. Although total volumetric coverage is less with silicon than with gas drift

detectors such as the TPC, the SVT has much finer spatial resolution (20 µm ) and

does not require extensive control systems for operation, such as is needed in a gas

detector.

As a complement to the TPC, the SVT was installed in STAR as a high spatial

resolution detector that could extend the tracking from the inner radius of the TPC

(50 cm) to the outer radius of the beam pipe (5 cm). In addition, the close proximity

to the interaction vertex allows the SVT to increase the momentum resolution of

tracks at STAR, especially at low momenta where track helices may not intersect the

active area of the TPC. While the name suggests one of its main purposes, the SVT

will also be beneficial in locating secondary decay vertices, useful in studies involving

such particles as the Λ and Ω.

2.5.1 Silicon Drift Detector Technology

When silicon is doped with certain materials, it can be made to have an excess (n-

type) or deficiency (p-type) of free electrons [11]. Highly doped silicon is termed n+

or p+. If a strip of n-type silicon is put into contact with a strip of p-type silicon, the

resulting junction creates an imbalance in local charge carrier concentration. This

forces electrons to move from the n-side to the p-side, and an electric field is set

up between the negatively charged p-side and the positively charged n-side. This

electric field, though small, is enough to create a depletion region within the small
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area surrounding the junction, in which free electrons and holes are forced by the field

out of the junction.

The depletion region thickness can be quite small, on the order of a few microns.

However, with the application of an external electric field in the direction of the

depletion field, the depletion region can be extended throughout the entire width of

the silicon. This pn-junction diode, as it is called, is useful in high energy experiments,

where the primary experimental goal is to measure positions of outgoing particles

from a collision vertex. Particles which pass through a section of depleted silicon will

ionize valence electrons (and holes) in the silicon, which will then be forced out of the

depletion region by the electric field and into a detection array.

There are a variety of ways in which to use such a system of depleted silicon

detectors. The simplest method is to have strips of p-n junctions spaced a certain

distance apart, and measure the charge coming from each strip separately to obtain

1-dimensional information about the position of an incoming track. By superimpos-

ing many layers of these “strip detectors” (SSD) one can obtain multidimensional

information. However, one of the problems with strip detectors is that if the occu-

pancy in any single detector is too high, it becomes difficult to uniquely determine

the individual hits due to the large number of possible combinations. Pixel detectors

eliminate this problem by assigning indisputable 2-dimensional positions to hits, but

in this case the number of readout channels scales with the number of pixels. This is

a technical problem when trying to design front-end electronics for a small detector

close to the interaction vertex.

A novel application of silicon detector technology was proposed by Gatti and

Rehak [12] which uses the concept of a silicon drift chamber within the depleted
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region. Ionized charges within the depleted silicon would be forced by a separate

electric field through the bulk of the silicon, and this charge would eventually end up

at detection points along the surface of the silicon. This type of detector is called the

silicon drift detector, or SDD, and an array of these detectors was constructed to be

used as the Silicon Vertex Tracker at STAR.

2.5.2 Description of the SVT

Silicon Detector Characteristics

A single SVT wafer is a 6.3 x 6.3 cm square of bulk n-type NTD (neutron transmu-

tation doped) silicon 280 µm thick, cut from a 4 inch diameter raw wafer of resistivity

3 kΩ·cm (See Figure 2.8). 220 p+ (highly doped) cathode strips are implanted on

both sides of the wafer at a 135 µm pitch, and a voltage divider implanted in the wafer

connects all cathode strips with 500 kΩ resistors. Across the midplane of each SVT

wafer is a central cathode called the continental divide held at -1500 V. Ionized charge

created in the wafer will always drift away from the continental divide, creating two

independent drift directions within a single wafer. For this reason, front-end electron-

ics must be attached to two edges of each wafer. Cathode strips are overlaid with

aluminum to reduce the resistivity, and in so doing produce a more uniform potential

across the cathode strip. [13]. Guard anode lines connect every 10th cathode in order

to lower the voltage at the edge of the detector (Figure 2.9). The arrangement of the

above components, and in particular the trapezoidal geometry of the cathodes, bring

the total active area of a single SVT wafer to 94.5%.

From the central cathode which is powered to -1500 V, the voltage is stepped

down linearly in either drift direction toward the edge of the wafer which is held at 0

V. The same voltage is applied to both the top and bottom cathodes, and it is this
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Figure 2.8: Schematic of an SVT wafer, showing cathode lines and charge collection
anodes.
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bias voltage across the p+/n junction that creates the depleted region throughout

the thickness (bulk) of the silicon. Since the voltage is the same on both sides of the

wafer for a particular cathode, a parabolic electric field is created perpendicular to

the plane of the wafer, with a minimum potential in the center (Figure 2.10).

With the silicon fully depleted, the linear decrease in voltage from the midplane

of the wafer to the edges creates two drift fields (one toward each of the two edges

of the wafer) which force any free electrons toward the anode collection point. Here,

a separate voltage divider provides a focussing field, forcing the drift electrons into

the charge collection area. The potential mapping can be seen more clearly in Figure

2.10, where the graph on the bottom left shows that the potential gradient in the

bulk of the silicon has a minimum at the midpoint of the wafer thickness. Ionized

electrons are forced to the center of the silicon bulk, and then subsequently forced

down the orthogonal potential gradient toward the edge of the wafer. The graph at

the bottom right of Figure 2.10 shows the potential distribution near the collection

anodes. Here, the field is adjusted so that electrons are forced to the surface of the

wafer, where the anodes are located.

The charge collection area consists of 240 n+ implanted anodes, 200 µm x 200 µm.

A cathode surrounds each anode in order to shield the anode from surface currents

and assist in focussing charge. The anodes connect to front-end electronics via a

25 µm wire bond. The small size of the anode pads results in a smaller capacitive

load to the preamplifier. This is important for SDD’s since the large drift length (3

cm) results in a substantial diffusion in the charge cloud by the time it reaches the

anodes [14]. As a result, the charge is spread out over many anodes, and as SDD’s

require temporal information about the charge distribution in order to extract the

25



Figure 2.9: Cathode line layout on SVT wafer. Guard anode lines connect every
10th cathode in order to create a controlled voltage gradient from the high voltage
cathode to the edge of the wafer. This requires the cathode lines to be placed in a

trapezoidal arrangement on the wafer.
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Figure 2.10: Field mapping in the SVT. The coordinate system corresponds to the
standard STAR coordinate system in which Z represents the beam direction. As a
particle passes through the wafer, it ionizes charge in the silicon bulk, which drift

toward the anodes under the influence of a parabolic potential as shown in the plot
in the lower left. When the ionization is close to the anodes, it experiences the

potential seen in the lower right plot which forces the ionization into the anodes at
the surface of the wafer.
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2-dimensional position information, the charge cannot be integrated as it would be

in SSD (silicon strip detector) devices. Therefore, much less charge is measured per

channel in an SDD device as compared to an SSD, and hence the overall noise in the

system is more critical for the success of the SDD.

Front-end Electronics

Ionization from the detectors is conducted from the anodes to the front-end elec-

tronics, a thick-film MultiChip Module (MCM, or hybrid) fabricated on a beryllia

substrate. Attached to each MCM are two sets of 15 IC chips: The Pre-Amplifier

ShAper (PASA); and the Switched Capacitor Array (SCA). Hybrids measure 63 mm

x 20.5 mm x 0.65 mm, and two of these devices are connected to every SVT wafer,

one at the end of each drift region. Due to the barrel geometry of the detector, hy-

brids are located in the active volume of STAR. As a result, very little maintenance is

possible with these electronics, since modification would involve a total disassembly

of the detector. Additionally, the fact that these electronics are in the interaction

volume means they must be designed with materials of long radiation length. Using

beryllia as the principle substrate, the radiation length of the hybrid is 1.4%.

The PASA is a high gain charge-sensitive amplifier that outputs a bipolar-shaped

voltage pulse in response to a charge pulse arriving from the anode [15]. It has a

gain of 7.2 µV/e− and a large dynamic range of 2000-25,000 e− rms. Such a large

dynamic range is necessary in order to accommodate the large charge depositions

(∼10 minimum ionizing) expected from the lower momenta particles the SVT was

designed to detect. PASAs also implement a bi-polar shaping function in order to

prevent baseline shifts which can occur during high-occupancy events. A simulation

of this PASA response function is shown in Figure 2.11. Baseline shifts are prevented
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Figure 2.11: Simulation of the PASA response function. The leading peak measures
the amount of ionization entering a single PASA channel, and its height is equal to
7.2 µV/e−. Note the characteristic undershoot that occurs after the initial signal

has passed.

by virtue of the fact that the total area under the curve is zero, and therefore multiple

PASA responses initiated by multiple hits on the detector do not change the zero level,

or baseline of the PASA. If baseline shifts were allowed, the average pedestal value

(baseline response of the front-end electronics) of a wafer would scale as the number

of hits on that detector, and so subsequent pedestal subtraction and zero-suppression

(§2.5.5) would not be able to extract the hits.

The output of the PASA is sampled by the SCA, which sequentially stores the

PASA’s voltage on one of the 128 capacitors in the array provided for each channel.

These capacitors sequentially sample the PASA output at a rate of 25 MHz. The total

drift time which can be recorded through 3 cm of SDD wafer is therefore 128
25MHz

= 5

µs. Since the sampling is continuous, the SCA capacitors are constantly overwritten
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Figure 2.12: 7-wafer SVT ladder. Individual wafers are split into two drift regions,
with ionized charge moving toward either the top or bottom hybrid, where the
charge is converted to a voltage pulse by the PASA (gold chips on hybrid) and

stored by the SCA (blue chips) for later retrieval.

with new data from the wafer. At the onset of a trigger signal, the SCA samples for

the total drift time, after which it connects its capacitors to an output driver, which

transmits the capacitor values onto an analog signal line at the rate of 1.6 MHz. Each

line accommodates 80 channels, which are read out in series. This results in a total

readout time of 128∗80
1.6MHz

= 7 ms.

Detector Assembly

Assembly of the SVT begins with attaching 4, 6, or 7 individual wafers to linear

arrays, termed ladders. Each ladder is split in the middle into two electrically isolated

sections. Power and signal lines are connected from the front-end electronics to either

end of the ladder, depending on which half of the ladder the wafer is located. A

completed ladder is shown in Figure 2.12.
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Completed ladders are then arranged in a polygonal barrel geometry by attaching

them to beryllium end rings. The barrels are constructed in such a way that ladders

with the same number of wafers overlap slightly, allowing 360◦ azimuthal coverage.

The inner, middle and outer barrels are composed of 4-wafer, 6-wafer, and 7-wafer

ladders, respectively, giving a constant pseudorapidity coverage of −1 < η < 1. The

completed detector is split into two half-shells so that it can be attached around the

RHIC beam line as seen in Figure 2.13. Figure 2.14 shows a pictures of the fully

completed detector before installation.

When fully powered, the SVT consumes 2.5 kW of power, 2 kW of which is

used to power the hybrids. Without appropriate cooling, the hybrids would reach

temperatures over 60 ◦C, resulting in circuit breakdown. Primary cooling for the

hybrids is provided by a negative-pressure water system which circulates through

carbon-fiber electronics carriers. The hybrids are glued to these carriers with a heat-

conductive epoxy, allowing optimum cooling of the front-end electronics. Although

the power dissipated through the silicon wafers is small, air is passed through the

volume of the SVT in order to keep the wafers at a constant temperature. The

negative-pressure water system is necessary since the SVT is located inside the inner

field cage (IFC) of the TPC, where the voltages can be as high as 28 kV. Any leak in

the SVT water system would only suck air into the system instead of dripping water

out on the high voltage elements on the TPC.

2.5.3 Drift Velocity Calibrations

Primary Contributors to the Drift Velocity Profile

Several parameters determine the drift velocity of free electrons in the drift field,

as well as the linearity of the drift region. The most important effect on drift velocity
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Figure 2.13: Diagram of ladder assembly into two half-shells. The ladders edges are
shown in blue surrounding the beam pipe in black. Pictured here are the transition

boards (labeled with a TR), which provide an additional resistor chain for the
cathode high voltage, and the the readout boxes (labeled with an RDO), which

convert the analog data from the front end electronics to digital signals and provide
power and monitoring for the SVT.
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Figure 2.14: Picture of completed Silicon Vertex Tracker. The hybrids are attached
to separate water-cooled carriers.

comes from the voltage gradients themselves. From the continental divide at the

center of the wafer to about 2 mm from the anodes, the drift field remains constant

with the aid of an external voltage divider attached to a separate transition board

outside the detector. The last 2 mm of drift length before reaching the anodes consists

of a focussing field which is nonlinear in the drift direction. This field is necessary to

force the electrons up to the anode pads at the surface of the wafer where they are

read by external front-end electronics. The focussing field increases the in-plane drift

velocity in the focussing region.

Temperature affects the drift velocity globally due to scattering of electrons via

lattice vibrations, which reduces electron mobility [16]. The inverse relationship of

drift velocity to temperature is given by equation (2.5), where α is an empirical

constant. From results obtained through laser tests, α ∼ 2.5. For the purposes of

calibrating the detector, a measured temperature change is translated into a scale
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factor for the drift velocity parameterization, based on measurements explained in

the section on calibration methods explained below.

dvdrift

vdrift

= −α· dT

T
(2.5)

Finally, a third effect results from the accumulation of charge in the SiO2/Si inter-

faces that are present in the silicon wafer. When the surfaces of the wafer are exposed

to air they oxidize, producing layers of SiO2 surrounding a pure silicon core. The net

positive charge in the oxide forces electrons from the central Si layer to migrate toward

the SiO2/Si interface when the bias voltage is applied. This accumulation of charge

can produce distortions in the drift field that result in nonlinearities in the drift ve-

locity profile. After the bias voltage on the wafer has been activated for a long period

of time (on the order of a few days), the charge saturates at the interface, and the

drift profile becomes constant. However once the bias voltage is turned off the drift

profile reverts to its original shape as the electrons move away from the interfaces.

Humidity also has a strong effect on the accumulation of charge at these interfaces,

since water collecting on the wafer surface affects the local charge distribution.

Calibration Methods

Several methods of calibrating the individual SVT wafers with respect to drift

velocity are utilized, one of which uses a design feature of the SDD. Eight MOS-type

charge injection lines are implanted parallel to the anodes at distances of 0.2, 1.0, 2.0,

and 3.0 cm from either edge of the wafer, in the drift direction. When a voltage pulse

is applied to these lines, charge is injected into the silicon bulk, and drifts toward the
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collection anodes. By measuring the timing of the injector charge over time, the drift

velocity of an individual wafer can be monitored as a function of time.

In the wafers used for the SVT, only a small fraction of the 1728 injector lines

proved reliable in generating charge in the silicon bulk. For this reason, the calibration

lines can only be used to describe global detector properties, such as temperature

changes and electron accumulation at SiO2/Si interfaces.

Comprehensive drift velocity characterization was accomplished via a prototype

data acquisition and calibration system. Using Labview, a computer-controlled x-y

stage with a mounted laser scanned across completed ladders, while a separate DAQ

system read out the resulting SCA information from the firing of the laser. The laser

light ionized the depleted silicon in much the same way that a charged particle from a

collision event would, creating a charge pulse in the detector that could be read out as

a localized hit. The Labview system employed Gaussian cluster-finding techniques to

locate the laser spot spatially within the detector as a function of anode position and

time bucket. Time bucket refers to which of the 128 capacitors the PASA output was

saved. By saving this information along with the x-y stage position, the relationship

between drift time and drift position was obtained, and entered into a database to be

used in offline analysis.

Figure 2.15 shows a typical result of a calibration measurement. In the upper

left plot, the Y-position of the stage is plotted vs. the measured drift time of the

laser pulse. The correlation is close to linear, as seen in the upper right plot where

the difference to a linear fit is shown. For the purposes of offline calibration, and

in order to be as accurate as possible, a 10th order polynomial fit is used in the

final offline calibration. The difference of this fit to the data is shown in the lower
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Figure 2.15: Drift velocity curves for an SVT detector. The upper left plot shows
the actual time vs. position curve, while the upper right plot shows the difference to
a linear fit. A difference to a 10th order polynomial fit is shown in the lower left plot.

The lower right plot is the same as the upper right plot with a different y-scale.

left plot. Calibration of all drift detectors showed noticeable differences in the drift

velocity profiles, as can be seen in Figure 2.16. For some detectors, a linear drift

velocity model would produce large errors in the hit positions, hence the need for a

polynomial fit.

Drift velocity measurements of this kind suffer from several problems, which in-

evitably must be addressed in offline analysis of the data. For one, the drift velocity
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Figure 2.16: Drift velocity curves for a particularly non-linear SVT detector. The
plots are ordered in the same way as in Figure 2.15.
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is dependent on temperature. Although the air temperature in the calibration envi-

ronment was measured, the temperature profile on a wafer can be quite complex. For

example, the embedded resistors connecting the cathodes are the main source of heat

generation on the surface of the silicon, resulting in a higher temperature along the

edges of the wafer than in the middle. Figure 2.17 shows this effect in a plot of laser

spot position vs. X (or anode position). The laser is set to move across the wafer

at a constant drift distance from the anodes. Due to misalignment of the wafer with

respect to the laser stage, an overall slope is seen in this figure which amounts to a

0.11◦ rotation of the wafer. Of more importance are the rises in the plot at both edges

of the wafer. Higher temperatures near the resistor chains reduce the drift velocity

and thus increase the total drift time for ionization moving in these areas of the wafer.

After adjusting for alignment, the difference in drift time between electrons in the

middle of the wafer and on the edges is a maximum of 15 µs in Figure 2.17. For

typical drift velocities of ∼7 µm/ns, this results in a ∼100 µm error in the position

of hits on the edges of a wafer, in the drift direction, if a linear profile is used.

The second problem involves the aforementioned electron accumulation in the

SiO2/Si interfaces inside the wafer. This charge migration can affect the drift velocity

profile as a whole. There is currently no way to parameterize this effect. Instead, the

accepted procedure is to analyze the drift velocity profile through offline analysis, and

over time measure the change in drift time associated with calibration injector lines

and an external laser system attached to the full detector. Thus the actual recorded

data is used to apply an ad hoc correction as a function of time.
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Figure 2.17: Laser injected hit drift times as a function of anode position of the
laser. The laser is positioned at a constant drift distance of about 2.5 cm from the

anodes, and moves in the anode direction in steps of 300 µm.
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2.5.4 Slow Controls

Design of the slow controls operating system for the SVT detector was based on

several established principles and methods already incorporated by the various other

subsystems at STAR [17]. The main purpose of the slow controls system is to control,

monitor and log hardware parameters for all hardware support systems involved with

the SVT. This includes power supplies connected to the detector, monitoring of the

cooling system, safety interlocks, and other control systems. In addition, slow con-

trols can interface to the data acquisition system located at the detector to readout

and/or modify raw data values which are subsequently sent to the STAR DAQ sys-

tem. Successful operation of the slow controls system is critical, not only in regards

to the potentially catastrophic consequences of operating support equipment improp-

erly, but also in that the debugging of a specific support system often requires a

thorough understanding of what the full system is doing at any particular time. This

means accurate logging of data coming from the rest of the system, a slow controls

requirement, is crucial in solving any specific problem.

At the heart of the slow controls system is a VME computing system using a Mo-

torola MVME167 processor. The processor is programmed and controlled remotely

using the Experimental Physics and Industrial Control System (EPICS) software

package, which manages a multitude of driver software used to control specific equip-

ment such as power supplies and multimeters. EPICS works by connecting a user-

defined database of hardware system properties, such as voltages, machine states, and

temperatures, to relevant driver software which performs the specified task. At the

same time, this database is made available over the network to be read or modified.
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Secondary programs utilize this by monitoring values to check for alarm states, log-

ging the values in an archive, and providing a graphical user interface to the database.

The latter is the most direct connection between the end user and the SVT detector,

allowing shift personnel to operate the detector and monitor its condition.

2.5.5 Year-1 Results

During the first year of Au-Au running at RHIC, the SVT group installed a

single 7-wafer ladder in order to test control systems, identify problems in the data

acquisition chain, and check offline analysis of the resulting data. Although no physics

analysis used this data, it was extremely useful in identifying the main problems in

those three areas. The discussion in this section will be limited to the results that had

an immediate impact on second run, in which the full SVT detector was installed.

Fig 2.18 shows a single hybrid from the Year-1 ladder during the 130 GeV Au-Au

run in the summer of 2000. Hit distributions such as these typically occurred in high

multiplicity events (> 2000 tracks in the TPC), and gave first-principle verification

of the detector operability and DAQ transfer. The dark tails of the hits are the result

of the PASA bi-polar response function, which produces an undershoot in the voltage

profile after the large voltage spike produced from the actual hit.

Normally, data would be converted online into cluster sequences through the use of

a zero-suppression algorithm. Figure 2.19 shows how the zero-suppression algorithm

is implemented. First, a pedestal file consisting of nominal ADC count values for

every pixel in the detector is subtracted form the raw data. Using two different

thresholds, a group of adjacent local [anode,time] points in the pedestal-subtracted

event is designated as a cluster if a certain number of pixels have an ADC count that
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Figure 2.18: Hit distribution on single SVT wafer during Year-1 operations.

exceeds the threshold values. For Year-1 operations, cluster finding was done offline,

without any online zero-suppression. This required every [anode,time] ADC value

to be saved for every event, and was necessary due to noise problems and to allow

optimization of the thresholds to be used in subsequent runs.

After the hits are located, the next step is to assign global STAR spatial coordi-

nates to each hit. This requires a parameterization of the drift velocity curves as well

as information about the alignment of the SVT ladders with respect to STAR global

coordinates. Attempts were made to make use of the drift velocity curves measured

on the bench, however it turned out that the studies made on Year-1 data were not

significantly improved between use of calibration curves and the use of a drift velocity

profile that assumed a constant drift velocity. This is due to the fact that the overall
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Figure 2.19: Example of zero-suppression algorithm

resolution is dominated by TPC track resolution. Detector alignment is accomplished

by analyzing TPC track residuals, which will be described in detail below.

The primary purpose of the SVT is to augment the tracking abilities of the TPC.

This can only be accomplished if reconstructed tracks of charged particles extracted

from the TPC can be extrapolated to the associated hits in the SVT. To this end, a

first check of the accuracy of the local-to-global conversion of SVT hits was made by

calculating residuals of TPC tracks extrapolated to the SVT. Residuals are calculated

by measuring the distance between the point where an extrapolated TPC track curve

intersects a wafer, and the closest SVT hit to that intersection point (See Figure

2.20). It should be noted that due to noise and detector inefficiencies in both the

TPC and SVT, not all hits and tracks are matched. The distance calculated from

successfully matched hits and tracks is either a radial distance on the surface of
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Figure 2.20: Year-1 hit clusters on a single hybrid, with TPC extrapolated tracks
shown as X’s

the wafer, or along one of the two orthogonal dimensions on the wafer: The anode

direction, which in STAR coordinates is the Z-direction; and the drift direction, which

in STAR coordinates is Φ, or if the ladder is positioned such that the wafers are parallel

to the ground (the case for the Year-1 ladder), the X-direction.

In Figures 2.21 and 2.22, the residual calculation is shown for many high multi-

plicity events for distances calculated in the anode and drift direction, respectively.

The matching is done using the radial distance on the wafer surface. In both figures

two separate Gaussian distributions are apparent. The narrow distributions are as-

sumed to consist of true matches, while the broader distribution is assumed to be

noise. The first conclusion from these plots is that the residual widths are larger in
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the anode direction (∼ 300 µm) than in the drift direction (∼ 100 µm), a result that

is not immediately obvious considering that the anodes are in fixed positions along

Z, while the drift direction depends on many factors. The reason for this discrepancy

stems from the fact that the TPC’s drift direction is in the SVT’s anode direction.

Since the TPC’s track position error is largest in its drift direction, this translates

into a larger residual in the TPC’s drift direction. Another fact that can be drawn

from the figures is that the residual widths are much larger than the design resolution

of the detector. Again, many factors are attributable to this result, including the

possible misalignment of the detector, detector calibration, and TPC track position

resolution.

Further analysis of Year-1 data revealed many of the problems which would have

to be solved during Year-2. Use of the drift velocity curves measured on the bench

showed no appreciable benefit to the residual studies, and in fact gave a larger Gaus-

sian width than studies using a constant drift velocity ansatz. Detector noise was not

a large problem, even though it was twice as large as expected (∼1100 as opposed to

550 e− rms). Instead, track matching suffered most from poor detector calibration

and alignment. These would be the main issues heading into Year-2.
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Figure 2.21: Z-residual distribution for Year-1 data. TPC tracks were matched to
unique SVT hits by finding the closest hit on the wafer to where the extrapolated

TPC track hits the wafer. The distance was then calculated in the anode direction.
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Figure 2.22: X-residual distribution for Year-1 data. TPC tracks were matched to
unique SVT hits by finding the closest hit on the wafer to where the extrapolated
TPC track hits the wafer. The distance was then calculated in the drift direction.
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CHAPTER 3

HBT INTERFEROMETRY

HBT interferometry (named after the radio astronomer Robert Hanbury-Brown

and mathematician Richard Twiss) is the study of waveform intensity interference, be

it from optical, electromagnetic, or quantum waves. It differs from standard Michelson

interferometry, which examines the interference of the amplitudes of waves impinging

on a single location.

3.1 Early Work

The history of HBT begins in astrophysics when, in the late 1950s, Robert Hanbury-

Brown and Richard Twiss began to experiment with the idea of measuring the size

of stars from the interference in the intensities of radio waves coming from opposite

edges of the star to two detectors (radio telescopes) [18]. Typical radio interferometry

involves the interference pattern set up when two sources of electromagnetic radiation

interfere at a single point far from the source. This type of interference occurs due

to a phase or path difference between the amplitudes of two incoming light waves. In

intensity interferometry, two detectors measure the light arriving from two separate

emission points on the star (for many different emission point pairs). Since the light

waves consist of photons, which are indistinguishable, there are actually two possible
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routes the light waves can traverse in order to reach the detectors on Earth. This

uncertainty means that both possibilities must be used when defining the state of the

photons, and it is this combination which imparts a correlation, which in turn gives

a measure of the star’s size.

3.1.1 Radio Astronomy

Michelson interferometry was first used (and ironically, is still used) to determine

the apparent angular diameter of stars. The setup, shown in Figure 3.1, consists of

two receivers at some distance apart, called the baseline. When the star is directly

between the two receivers, the path difference between the incoming light waves to the

two detectors is zero, and so except for the phase difference, the waves interfere con-

structively producing a maximum. As the earth rotates, the path difference changes,

and eventually the waves destructively interfere to produce a minimum. These min-

ima and maxima are reproduced until the noise overwhelms the system, and the

resulting interference pattern is used to find the angular diameter of the source.

The separation of the interference fringes (and thus the resolving power of the

interferometer) is inversely dependent on the length of the baseline and the diameter

of the star. Resolving power is higher when the fringes are close together, so the

obvious way to increase resolution would be to increase the baseline. This however

became a significant technical problem during the time Hanbury Brown and Twiss

were making their measurements, since there was no reliable way of transmitting

phase information across very large distances. In order to circumvent this limitation,

they decided to use a method which would not require phase stability, but rather use

the wave intensity.
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Figure 3.1: Diagram of a Michelson interferometer used to detect the angular
diameter of a radio source.

In Figure 3.2 a schematic is shown of the HBT intensity interferometer. Here,

waves emitted from sources a and b impinge on detectors 1 and 2. The resulting

amplitudes seen at each detector are given by:

A1 = 1
L

(
αei(pr1a+φa) + βei(pr1b+φb)

)

A2 = 1
L

(
αei(pr2a+φa) + βei(pr2b+φb)

)
, (3.1)

where α and β represent the emission strengths at source points a and b, respectively,

and φa and φb are the starting phases of the two waves as they are emitted from the

two source points. In this example, both waves are assumed to have been emitted

with the same momentum p.

The difference between Michelson and HBT interferometry comes about in how

the intensities measured at detectors 1 and 2,

I1 = |A1|2 =
1

L2

(|α|2 + |β|2 + 2Re
[
α∗βei[p(r1b−r1a)+(φb−φa)]

])

I2 = |A2|2 =
1

L2

(|α|2 + |β|2 + 2Re
[
α∗βei[p(r2b−r2a)+(φb−φa)]

])
, (3.2)
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Figure 3.2: HBT intensity interferometry diagram. Waves emitted from source
points a and b can go two possible routes to detectors 1 and 2.

are used in the experiment. If the intensity is examined for a short time, the initial

interference pattern will show itself due to the phase variation in the last term of

equation (3.2). If the intensity is averaged over long times, these phases cancel due to

the randomness in φa and φb, and the interference fringes seen at the single detectors

vanish:

〈I1〉 = 〈I2〉 =
1

L2

(|α|2 + |β|2) . (3.3)

Examination of the coincidence rate, 〈I1I2〉, again averaged over long times, gives

the product of the two single intensity measurements at the two detectors, plus an

extra term which depends on the physical extent of the source. Normalizing the

coincidence rate by the product of the single intensities gives the correlation function,
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a direct link between the property of the source that is to be measured, namely its

physical extent, and the observed data, or the measured intensities at two detectors:

C
(−→

R ,
−→
d

)
=

〈I1I2〉
〈I1〉 〈I2〉 = 1 +

2 |α|2 |β|2(|α|2 + |β|2)2Cos [p (r1a − r2a − r1b + r2b)] . (3.4)

Equation (3.4) demonstrates that correlations still exist even in time-averaged

intensity measurements. Although this would (temporarily) prove useful in the astro-

nomical measurements made by Hanbury Brown and Twiss, its most consequential

impact would be in the realm of particle physics. Eventually, techniques were devel-

oped that allowed the amplitudes from widely spaced radio telescopes to be combined

without loss of phase information, and Michelson interferometry soon emerged again

as the primary method of determining angular diameters of stellar objects.

3.1.2 Pion Correlations from the Bevatron

In 1959 measurements at the Bevatron showed a propensity for like-signed pions

to be measured at a smaller relative angle than was ascribed by energy-momentum

conservation and Fermi statistics [19]. At the time it was believed that the discrepancy

was due to “other pion-pion correlations”, and one year later the foundation for

HBT as it is used today was laid by identifying Bose-Einstein statistics as the major

contributor to the Bevatron results [20].

Under the rules of Bose-Einstein statistics, two pions emitted from two separate

locations in the source can arrive at two detectors, exactly as in the astronomical case

of Figure 3.2. Since the pions, being bosons, are indistinguishable, their wavefunction
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is a superposition of the two possible paths for the pions to follow [20]:

φS (1, 2) =
1√
2

[
eip1·r1eip2·r2 + eip1·r2eip2·r1] . (3.5)

Here, r1 and r2 are the distances between the source and detectors 1 and 2, re-

spectively. Integrating the square of φS (1, 2) gives the probability distribution of

simultaneously finding two pions with momenta p1 and p2. Normalizing this dis-

tribution by the volume (assumed spherical) of the source results in the correlation

function:

ψ (1, 2) = 1 + 9

(
cos t

t2
− sin t

t3

)2

, t = |p1 − p2| ρ, (3.6)

where ρ represents radius of the integration volume. Just as in equation (3.4), the

pion correlation function is fit to experimental data, in this case the t distribution of

pion pair momenta, and a parameter related to the size of the interaction volume, ρ,

is extracted.

Although the formalism used here is useful to develop an intuitive understanding

of HBT, in the next section a more comprehensive analysis is used employing pion

field operators. This analysis lends itself to a simpler understanding of the main topic

of this thesis, three-pion HBT correlations.

3.2 Theory of Identical Boson Interferometry

Pions emitted from a heavy-ion collision behave according to the QED equation

of state for free-traveling particles, the Klein-Gordon equation:

(
∂2

∂t2
+ ∇2 + m2

π

)
Φ (x) = J (x) . (3.7)
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In this equation, J (x) represents the nuclear current operator acting as the source of

pions [21], mπ is the mass of a pion and Φ (x) is the pion field. If pion-nucleon rescat-

tering is ignored, then the pion and nuclear field equations can be decoupled from

equation (3.7), and the problem is reduced to solving for the pion field. The single

and two-particle momentum distributions are calculated directly from the resulting

field equations, providing a link between the experimentally observed distributions

and the source dynamics at freeze-out.

3.2.1 Pion field Operators

The single and two-particle coincidence momentum probability distributions for

pions are given below:

P1 (p) = Ep
dN
d3p

= Ep

〈
a†

pap

〉
(3.8)

P2 (p1, p2) = Ep1Ep2

dN
d3p1d3p2

= Ep1Ep2

〈
a†

p1
a†

p2
ap2ap1

〉
. (3.9)

In the above equation, Ep is the energy of a pion with momentum p, and a†
p, ap

represent the creation and annihilation operators acting on a coherent state |J〉, the

solution to equation (3.7). One of the properties of |J〉 is that it is an eigenstate of

ap, so that

ap |J〉 = iJ (p) |J〉 . (3.10)

Equation (3.10) allows an immediate computation of the the probability distribu-

tions in equations (3.8) and (3.9). The two-pion correlation function C (p1, p2) is the

experimentally measured ratio of the two-pion coincidence momentum distribution

to the single pion distribution, and for the above coherent state |J〉 it is found to be:

C (p1, p2) =
P2 (p1, p2)

P1 (p1) P1 (p2)
=

〈
a†

p1
a†

p2
ap2ap1

〉
〈
a†

p1ap1

〉〈
a†

p2ap2

〉 =
|J (p1)|2 |J (p2)|2
|J (p1)|2 |J (p2)|2

= 1 (3.11)
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Thus, for pions behaving under the nuclear current operator in equation (3.7),

there are no momentum correlations between pairs. In order to calculate the effect of

pions emitted from a chaotic source, it is necessary to use a superposition of classical

sources distributed in phase space. By averaging over these sources, the two-particle

momentum probability distribution (Equation 3.9) can be factorized as [22]:

P2 (p1, p2) = Ep1Ep2

〈
a†

p1
a†

p2
ap2ap1

〉
= Ep1Ep2

[〈
a†

p1
ap1

〉 〈
a†

2ap2

〉
+

〈
a†

p1
ap2

〉 〈
a†

2ap1

〉]
.

(3.12)

This factorization assumes independent particle emission, or full source chaoticity. It

is one of the central assumptions of HBT, and testing it will be the primary focus of

Chapter 4. Another name for the factorization in equation (3.12) is the generalized

Wick Theorem. Heuristically it can be seen as a description of the two possible

paths two identical particles can take after being emitted from two source points

and arriving at two detection points. The Wick Theorem will be expanded for the

three-particle case in the next chapter.

Using equation (3.12), the two-pion correlation function can be calculated for a

chaotic source:

C2 (p1, p2) =
P2 (p1, p2)

P1 (p1) P1 (p2)
= 1 +

∣∣〈a†
p1

ap2

〉∣∣2〈
a†

p1ap1

〉〈
a†

p2ap2

〉 . (3.13)

The expectation values can be computed and related to the Wigner phase-space den-

sity, S (x,K), the quantum mechanical analogue of the classical phase-space density

[23] which is a function of both space x and total momentum K. The resulting

expression is [24]:

√
Epi

Epj

〈
a†

pi
apj

〉
=

∫
S (x,Kij) eiqijxd4x. (3.14)
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In this equation, Kij =
pi+pj

2
is the average momentum of a pair of pions i and j,

and qij = |pi − pj| is the invariant momentum difference of the pair. Using equation

(3.14) with equation (3.13) gives the expression for the two-pion correlation function

in terms of the Wigner phase-space density:

C2 (p1, p2) = 1 +

∣∣∫ d4xS (x,K) eiq·x∣∣2∫
d4xS (x, p1)

∫
d4xS (x, p2)

. (3.15)

In order to parameterize the two-pion correlation function in terms of the physical

observables of pion momenta, the Wigner phase-space emission function S (x,K)

can be approximated by a Gaussian distribution [25]. This results in a Gaussian

correlation function in terms of the momentum difference q = p1 − p2:

C2 (q,K) = 1 + e−qµqν〈x̃µx̃ν〉(K). (3.16)

x̃µ describes the rms widths of effective sources of particles with total momentum

K. Different parameterizations can obtain these widths in a particular coordinate

system to describe the size of the freeze-out region, however the widths obtained only

describe the length of a “region of homogeneity” where particle pairs with momentum

K are emitted.

3.2.2 Correlation Function Parameterizations

Qinv

The simplest Gaussian parameterization folds all length and time information

into one length scale, extracted from a distribution of invariant four-momentum dif-

ferences (Qinv =
√

|p1 − p2|2 − (E1 − E2)
2). Once the correlation function has been

computed, it is fit to the following equation:

C2 (q,K) = 1 + λ (K) e−Q2
inv ·R2

inv(K). (3.17)
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The λ parameter in equation (3.17) represents the degree of contamination in the

particle sample being studied, as well as a measure of the degree of chaoticity in the

system. In a pure particle sample with full chaoticity its value would be unity. Since

the correlation function is one-dimensional, very few statistics are needed to obtain

a high quality fit to the data, however since the fit parameter Rinv (K) folds so much

information into one variable, it is difficult draw a substantial conclusion about the

properties of the source.

Bertsch-Pratt Parameterization

A 3-dimensional cartesian parameterization, first used by S. Pratt and G. Bertsch

[26, 27], uses a coordinate system based on the pair momentum k. Looking at Figure

3.3, for every pair, the momentum of each track is projected along the beam direction

and the transverse direction. The transverse momenta are further split into two

components, one in the direction of kT of the pair and the other in the orthogonal

direction. From these projections, the invariant momentum difference is calculated

for each direction: kT (out); ⊥ to kT (side); and parallel to the beam (long). These

quantities are then used to produce a 3-dimensional correlation function, which can

be fit to:

C2 (q,K) = 1 + λ (K) e−q2
out·R2

out(K)−q2
side·R2

side(K)−q2
long·R2

long(K). (3.18)

Although all three radius parameters describe lengths of homogeneity along the

three axes, Rout (K) contains additional information about the lifetime of the source,

due to the fact that this parameter is sensitive to pions which are created at a later

time, traveling in the direction of k of the pion pair, whereas Rside (K) is sensitive
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Figure 3.3: Bertsch-Pratt or cartesian parameterization of the two-pion correlation
function.

only to those pions created at the periphery of the freeze-out region, at the onset of

hadronization, and not to those created at later time.

The difference in sensitivity between Rout (K) and Rside (K) to the pions with

delayed emission allows in a simplified picture for an estimate of the lifetime of the

freeze-out source [25]:

R2
out (K) − R2

side (K) ≈ β2
⊥

〈
t̃2

〉
. (3.19)

In this equation, β2
⊥ is the transverse velocity of pair, and

〈
t̃2

〉
is the average emission

duration of the source. Estimating the lifetime with equation (3.19) assumes that

Rout (K) and Rside (K) measure approximately the same physical homogeneity length

of the source. This can be a faulty assumption if the source is opaque (See figure

3.4), in which case Rside (K) would measure a much larger homogeneity length than

Rout (K), resulting in an imaginary emission lifetime [28].
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Figure 3.4: Opaque source, in which Rside measures the homogeneity length of the
source, but Rout is sensitive only to the surface thickness, denoted by 〈x〉.

3.3 Experimental Procedures

Reconstructed TPC track data from the Year-1 run were stored on DST (data

storage tape) files, and were subsequently reduced to a smaller microDST format for

use within the HBT working group. These files contained only those track parameters

which were necessary for performing the HBT analysis, such as particle momentum,

dE
dx

and topological information for use in correcting detector effects (§3.3.2).

3.3.1 Experimental Correlation Function

Correlation functions are generated in the HBT code by creating two separate

histograms. The Numerator histogram uses particle pairs that pass certain track cuts

based on acceptance, topology and kinematics. These pairs are used to calculate a
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particular quantity related to the correlation function parameterization that is being

studied, which is then subsequently recorded in the histogram. All pairs in the Nu-

merator histogram come from the same collision event, and thus are called real pairs.

The Denominator histogram accepts pairs of particles in which one track comes from

the event being used to generate pairs for the Numerator histogram, and the other

track from a separate event. The Denominator or mixed-event histogram uses several

events previously used by the Numerator histogram to increase statistics. Quantities

calculated in the mixed-event histogram are corrected to account for the Coulomb

effect as described in §3.3.3.

Once all events which pass certain event cuts are used, the two histograms are

divided, Numerator by Denominator, bin by bin in the histograms, to generate a Ratio

histogram. This constitutes the final experimental correlation function, which can be

fit to the parameterized curves described in §3.2.2 to extract source parameters.

3.3.2 Detector Effects

Tracks used to generate correlation function histograms must pass certain cuts

before being used. Kinematic cuts are applied as required by the parameterization

chosen and the physics being investigated. In addition, the physical limitations of the

TPC requires certain cuts to increase track quality. These detector related cuts and

corrections are described in the sections below.

Acceptance

The active volume of the TPC extends 4.2 meters in the beam direction (Z), and

from 0.5 to 2 meters radially. This gives an acceptance coverage of 360◦ in φ, the

azimuthal angle about the beam direction, and |η| < 1.8 in pseudorapidity. Events
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that do not occur in the middle of the TPC have some of their tracks lying in a

smaller volume of the TPC, reducing the number of hits recorded (§2.4.1) by the

TPC along the length of the track and thus reducing the track momentum resolution.

To overcome this, events are selected which have their primary vertex within 75 cm

of the center of the TPC. Since the mixed-event histogram uses different events, the

mixed event buffer groups events according to primary vertex location, and only mixes

those events which have similar primary vertex locations to avoid biasing the data

with events which have different phase space acceptances.

Maximum TPC coverage can also be attained by reducing the rapidity window in

which tracks are accepted, however this reduces statistics. For the two-pion analysis,

the accepted rapidity for tracks was |y| < 0.5. The transverse momenta of tracks must

also be restricted, since at low momentum tracks will bend so tightly that they do

not enter the 0.5 m inner radius of the TPC, and at high momentum tracks appear

as straight lines and their curvature is not resolvable by the TPC. In addition, as

described in §2.4.2 higher momentum tracks are not able to be identified using the

dE
dx

of the track. In the two-pion analysis three pT ranges were used: 0.125 < pT <

0.225; 0.225 < pT < 0.325; and 0.325 < pT < 0.450 GeV/c.

Split Tracks

In the reconstruction of tracks from the TPC hit information it is possible for a

single track to be mistakenly identified as two tracks. This happens if several hits

along the track are used to reconstruct a second phantom track. Normally this occurs

if a track passes a dead area of the detector or crosses a sector boundary, causing the

track reconstruction software to get confused and erroneously split one track into

two. Pairs of tracks created by split tracks create an enhancement in the invariant
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Figure 3.5: Using TPC pad hit information to determine split pairs. In the left
figure, two tracks have several hits which share TPC pad rows, and some which do
not, hence it is not a split pair. A purely split pair, as shown in the middle figure,

would not share any pad rows among hits between the two tracks.

momentum difference distribution at the lowest q bin, as the tracks forming the split

pair each have the same momentum. In order to eliminate this effect, track pairs are

tested to see what percentage of hits from one track share a TPC pad row with a hit

from the other track. This method is detailed in Figure 3.5. A purely split pair would

not share any pad rows between their hits, while a true pair, in which both tracks are

composed of the maximum 45 TPC hits, would share all TPC pad rows. By allowing

only those track pairs with a minimum pad row sharing percentage, most split track

pairs can be removed.
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In order to quantify the degree of splitting between two tracks, a value is calculated

for every pair according to this formula:

Quality =

∑
pads with 1 hit −

∑
pads with 2 hits∑

hits

, (3.20)

where the number of hits on a pad is calculated only for the two tracks of interest,

and the sum of hits factor in the denominator corresponds to the total number of

hits among the two tracks. For a purely split track, there would be no pads with two

hits, only pads with 1 hit, and so equation (3.20) would give a value of 1. For two

distinct tracks, each with a hit on every pad, there would be only pads with 2 hits,

however when dividing by the number of hits, since there are two hits on each pad

this would give a quality value of -0.5. So the range of values are from -0.5 to 1.0,

with -0.5 corresponding to perfectly distinct tracks and 1.0 corresponding to 100%

split tracks. For the purposes of this analysis, all pairs which had quality > 0.6 were

rejected. Rejecting tracks with a lower quality value does not significantly affect the

shape of the correlation function, but instead only reduces statistics.

Merged Tracks

A separate, and more insidious, detector effect occurs when two real tracks lie

close to one another in coordinate space. Due to the finite two-hit resolving power

in the TPC pad rows, two close real tracks can be merged into one during software

reconstruction. This produces the opposite effect of split tracks, a de-enhancement of

the correlation function at low Qinv, since tracks from particles coming from different

events can be very close in coordinate space and still be counted as two distinct

tracks. There, of course, can be no hit merging between tracks coming from two

separate events.
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To remove this effect, it is necessary to limit the spacing between tracks that

are used to form pairs. The standard method for accomplishing this is to require

a minimum separation of the tracks, as defined by their locations upon entering or

exiting the TPC. This entrance (or exit) separation cut is applied both to real pairs

and mixed-event pairs so as to remove the effect of the cut when the ratio of the

histograms is taken.

The standard entrance separation cut value for Year-1 analysis was 2.5 cm, how-

ever it was found that a systematic shift in the correlation function fit parameters

was observed as this cut value was changed. By assuming the source function was

a double Gaussian distribution, this systematic behavior was reproduced in simula-

tions, and so the final decision was made to use the entrance separation cut and then

subsequently correct the fit values by a factor obtained in simulations.

3.3.3 Final State Interactions

Several interactions occur among pions as they are expelled from the freeze-out

region. Most of these are negligible, however one in particular, the Coulomb interac-

tion, has such a long range that it must be corrected in the data in order to extract

the Bose-Einstein correlation.

Electromagnetic

The Coulomb interaction is a long range potential which suppresses the correlation

function at low Qinv for like-signed particle pairs. Particles emitted from the same

region of momentum space are affected more strongly by this interaction, and so this

effect can be corrected by obtaining a weighting factor which is dependent on the

momenta of particles in each pair. This factor is calculated by numerically solving
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the Coulomb wave function, assuming a given source size, and extracting the value of

the two-particle momentum probability when substituting the symmetrized Coulomb

wave function for the source wavefunction [29]. For this analysis, Coulomb correction

factors were obtained through a 5-dimensional Monte-Carlo integration of Coulomb

wave functions over a spherical source [30]. The final correction factor is obtained by

iteratively adjusting the Coulomb source size until it matches the radius parameters

obtained from a fit using the correlation function parameterization.

Although the Coulomb interaction only affects real pairs in which both particles

come from the same event, in the calculation of a correlation function, it is pairs from

the mixed-event Denominator which are weighted by a factor equal to the suppression

that a same-event pair would experience. The ratio of the real and mixed-event

distributions then cancel the effect. The correction factor is applied to mixed-event

pairs due to the larger number of pairs that can be formed from multiple buffer events.

Strong Nuclear

Although final-state particles are colorless, the residual nuclear force creates an

attractive potential at small distances. Protons are affected much more by this poten-

tial than pions, and must be corrected. The distance at which pions are significantly

affected is 0.2 fm [31], much less than the ∼5.0 fm homogeneity length found in the

data. For this reason pions need not be corrected for the strong nuclear interaction.

3.3.4 Event Centrality

Collision events are classified according to impact parameter b, the relative dis-

tance between the centers of the two nuclei as they pass closest to one another. The

impact parameter of an event is inversely related to the energy deposition within the
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collision region, and thus also to the number of particles which are created. For most

analyses, the centrality, or how close the impact parameter of an event is to zero, is a

major determination of what physics will be seen in a particular class of events, and

so events are often grouped into collections, or bins, of a common centrality.

Centrality bins are determined after data has been collected and the number of

tracks of a certain charge have been counted for each event. In Figure 3.6, the

number of events with a particular number of negatively charged hadrons is plotted

for various bins in multiplicity (number of tracks of negatively charged hadrons) [1].

The entire plot is then scaled such that the integral under the curve is equal to the

total inelastic cross section for Au+Au collisions at
√

sNN = 130 GeV, which through

Glauber calculations is 7.2 barns. By normalizing the plot in this way, the y-axis

becomes the differential cross section with respect to number of negatively charged

hadrons, and so centrality can be defined by selecting events which comprise a certain

percentage of the total cross section. For the purposes of the HBT analysis, events

were grouped into three bins, which were comprised of the 12% most central (bin 3),

the next 20% most central (bin 2), and the next 40% most central (bin 3).

3.4 Two-Particle HBT Results

Due to the large number of pions generated in a heavy-ion collision, the first results

obtained from STAR used pions only. Other particle types, such as protons, K±, and

K0 give results that are sensitive to those parts of the source where the particles were

created. All results shown in this section were made possible due to the extensive

effort of the STAR HBT physics working group, and are published in Ref. [2].
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Figure 3.6: Distribution of negatively charged hadrons, normalized such that the
integral under the curve equals the total hadronic cross section of Au+Au collisions

at
√

sNN = 130 GeV. Obtained from Ref. [1].
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3.4.1 1D and 3D Correlation Functions

The correlation functions for the Qinv and 3-dimensional Bertsch-Pratt parame-

terizations are shown in Figure 3.7. Shown in these plots are both the uncorrected

and Coulomb corrected correlation functions. The lines through the corrected data in

panels (b)-(d) represent projections of a 3-dimensional fit, using equation (3.18), per-

formed on the 3-dimensional correlation function. Panel (a) uses a one-dimensional

fit to the data. From the data, it is clear that the Coulomb potential has a large

effect on the data at small q values.

3.4.2 Centrality and mT Dependence

The fit values obtained from the Bertsch-Pratt parameterization are shown in

Figure 3.8 for three centrality classes as well as three mT bins. mT , the transverse

mass of the pair, is used instead of kT as the measure of pair momentum in order to

make comparisons to previous experiments. It is defined as mT =
√

m2
π + p2

T . For

the centrality study, particles were chosen with 0.125 < pT < 0.225 GeV/c, while in

the mT study particles were selected from the highest centrality bin. The dependence

on centrality shows an expected increase in the radius parameters, while λ stays

relatively constant. π+ and π− data show good agreement.

The data also show a dependence of the Bertsch-Pratt parameters on mT . λ

increases with mT , possibly showing that pions at larger pair momentum have less

contamination from long-lived resonances or are formed with more random phases

than those pions with smaller mT . All three radii decrease with increasing mT ,

suggesting a large transverse flow within the source [32].
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Figure 3.7: Qinv (a) and 3-dimensional Bertsch-Pratt (b,c,d) correlation functions
for π− data. The open diamonds show the uncorrected correlation functions while

the stars represent the Coulomb corrected correlation functions. Obtained from Ref.
[2].
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3.4.3 Comparison to Previous Data

Figure 3.9 shows the accumulated HBT data over five experiments, with the last

and highest energy data points obtained from STAR’s analysis. One of the most

striking features of this plot is the relatively small change in the Bertsch-Pratt fit

parameters over such a large energy spectrum. Some searches for the QGP rely on

the fact that the number of degrees of freedom in a QGP, which consists of several

quark flavors, is much larger than the hadron gas into which the QGP must ultimately

freeze out. This freeze-out must therefore occur very slowly, and so not only should the

lifetime of the source increase but also the homogeneity lengths over which particles

hadronize. Figure 3.9 suggests that, given this theory, either the QGP has not formed

in the energy range given, or it already formed at a much lower energy than was

expected.
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CHAPTER 4

THREE-PION HBT

As was discussed in the previous chapter, two-particle HBT provides the means

of extracting geometric and dynamic information about the freeze-out source of a

heavy-ion collision. In the derivation, the assumption of full source chaoticity is

verified to first order by determining the value λ of the intercept of the two-particle

correlation function. In the absence of final-state interactions this value should be

unity, however given the importance of the chaotic assumption it would seem prudent

to obtain further verification.

Three-particle correlations continue the derivation of §3.2.1 by introducing the

three-particle simultaneous momentum probability term, and using the Wick theorem

for three particles to extract a term that is directly sensitive to the quantum particle

production phases of the particles emitted from the freeze-out region. This term,

the three-particle correlator, is directly measurable and gives a precise value for the

degree of chaoticity in the system.
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4.1 Derivation of Three-Particle Correlator and Chaotic Frac-
tion

As before in §3.2.1, the single and coincidence particle momentum probability

distributions can be written in terms of an ensemble average of creation and annihi-

lation operators acting on states obeying the Klein-Gordon equation with a source

current term. The definition of the three-particle coincidence momentum probability

distribution is defined likewise, and from its factorization the three-particle correlator

is obtained.

4.1.1 Factorization of Momentum Distributions

Equations (3.8) and (3.9) give the momentum probability distributions for 1 and

2 particles. The 2-particle momentum distribution is factorized as in §3.2.1 by the

use of the generalized Wick theorem for bosons,

〈
a†

1a
†
2a2a1

〉
=

〈
a†

1a1

〉〈
a†

2a2

〉
+

〈
a†

1a2

〉〈
a†

2a1

〉
, (4.1)

and assuming independent particle emission from the source. Equation (4.1) is very

important, as it forms the basis for an assumption of a chaotic source. The test of

this assumption is what finally tells us whether or not the physical system is fully

chaotic. Using equations (3.9) and (4.1), the experimental two-boson correlation

function is reformulated as in equation (3.13). In this formula, the expectation values

are calculated using the integral expression below which involves the Wigner phase-

space density, S (x,K):

〈
a†

pi
apj

〉
=

∫
S (x,Kij) eiqijxd4x = f (Qij, Kij) eiφ(Qij ,Kij). (4.2)
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The right-hand side of equation (4.2) is a way of expressing the complex result of the

integral calculation as a real modulus multiplied by a phase factor. Since S (x,Kij) is

the physical phase-space density function, it is real-valued function. Also, S (x,Kij)

is only of function of Kij, and so under particle reversal its sign does not change, from

which it follows that f (Qij, Kij) must be even in Qij, and φ (Qij, Kij) must be odd in

Qij. A direct result of this is that φ (Qij = 0) = 0. By using the Wick theorem with

equation (4.2), a result which verifies the previous statement that φ = 0 at Qij = 0

will form the basis of a validation of source chaoticity. By inserting equation (4.2)

into equation (3.13) one arrives at the result

C2 (p1, p2) = 1 +
f 2

12

f11f22

, (4.3)

where fij ≡ f (qij, Kij).

Expanding this analysis to three particle correlations, the corresponding three

particle coincidence momentum probability distribution can be written as:

P3 (p1, p2, p3) = Ep1Ep2Ep3

dN

dp3
1dp3

2dp3
3

= Ep1Ep2Ep3

〈
a†

p1
a†

p2
a†

p3
ap3ap2ap1

〉
. (4.4)

The Wick theorem can be expanded for three particles heuristically by taking all

possible combinations of three particles emitted from three source points detected by

three separate detectors. These combinations are given in the following Wick theorem

for three particles (which, again, assumes chaotic particle production):

〈
a†

1a
†
2a

†
3a3a2a1

〉
=

〈
a†

1a1

〉〈
a†

2a2

〉〈
a†

3a3

〉
+

+
〈
a†

1a2

〉〈
a†

2a1

〉〈
a†

3a3

〉
+

〈
a†

1a3

〉〈
a†

2a2

〉〈
a†

3a1

〉
+

〈
a†

1a1

〉〈
a†

2a3

〉〈
a†

3a2

〉
(4.5)

+
〈
a†

1a2

〉 〈
a†

2a3

〉 〈
a†

3a1

〉
+

〈
a†

1a3

〉〈
a†

2a1

〉 〈
a†

3a2

〉
.
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Using equations (4.5), (4.2) and (4.3), the experimental three particle correlation

function can be written as [33]:

C3 (p1, p2, p3) = P3(p1,p2,p3)
P1(p1)P1(p2)P1(p3)

= 1 + (C2 (p1, p2) − 1) + (C2 (p2, p3) − 1) + (C2 (p3, p1) − 1) + (4.6)

2
√

(C2 (p1, p2) − 1) (C2 (p2, p3) − 1) (C2 (p3, p1) − 1) cos (φ12 + φ23 + φ31) .

4.1.2 Phase Factor

A simplified version of equation (4.5) is used in practice by calculating invariant

momentum differences. Given the paucity of statistics, it is necessary to project

the several dimensions down to a scalar measure of the relative momentum between

triplets and pairs. This relative momentum is calculated for two particles with the

standard Qinv definition, Qij = |pi − pj|, and for three particles three Qij terms

are added in quadrature: Q3 =
√

Q2
12 + Q2

23 + Q2
31. The resulting equation for the

measurement of the overall phase factor is:

cos (Φ) =
(C3 (Q3) − 1) − (C2 (Q12) − 1) − (C2 (Q23) − 1) − (C2 (Q31) − 1)

2
√

(C2 (Q12) − 1) (C2 (Q23) − 1) (C2 (Q31) − 1)
, (4.7)

where Φ = φ12 + φ23 + φ31.

Here Q3 =
√

Q2
12 + Q2

23 + Q2
31 and Qij =

√−(pi−pj)2 are the standard invariant

relative momenta [3, 4] which can be computed for each pion triplet from the three

measured momenta (p1,p2,p3). Equation (4.7) can be written as the normalized

three-pion correlator :

r3 (Q3) =
R3 (Q3)√

R2 (Q12) R2 (Q23) C2 (Q31)
= 2cosΦ, (4.8)
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where

R2 (Qij) = C2 (Qij) − 1,

R3 (Q3) = C3 (Q3) − 1 − R2 (Q12) − R2 (Q23) − R2 (Q31)

Although the preceding derivation assumed a fully chaotic source by utilizing the

Wick theorem, equation (4.8) will be used later to determine the degree of chaoticity

by assuming a partially chaotic source.

In Ref. [34] the ratio r3 is defined in terms of functions which depend on all 9 com-

ponents of (p1,p2,p3); however, limited Q3 statistics even in our high-statistics single

particle sample requires a projection of both the numerator and denominator onto a

single momentum variable, Q3. The implications of this projection are commented

on further below.

For fully chaotic sources r3 = 2 cos Φ is the Heinz-Zhang phase factor which ap-

proaches r3 = 2 as all relative momenta (and thus Q3 and Φ [34]) go to zero. If the

source is partially coherent, a relationship can be established between the limiting

value of the three-pion correlator at Q3 = 0 and the chaotic fraction ε (0≤ ε≤ 1) of

the single-particle spectrum [34]:

1

2
r3 (Q3=0) =

√
ε

3 − 2ε

(2−ε)3/2
. (4.9)

This expression is not affected by the projection onto a single relative momentum

variable. To exploit this and extract the degree of chaoticity ε, the measured data

for r3 must, however, be extrapolated from the finite measured Q3 to Q3 = 0.
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4.2 Method of Calculation

All analysis performed on Year-1 data used the same software infrastructure as was

used for other HBT analyses. Additional code was built to create triplet distributions

and calculate cuts and corrections based on triplets instead of pairs. A separate

routine was used to eliminate high-Q triplets, as the resources available would have

been insufficient to study all possible triplets formed from events, and the effect of

interest is near Q = 0.

4.2.1 Three Pion Q3 Correlation Function

Similar to the two-pion correlation function, the three-pion correlation function

C3 (Q3) is calculated from the data by taking the ratio A(Q3)
B(Q3)

and normalizing it to

unity at large Q3. Here A (Q3) = dN
dQ3

is the three-pion distribution as a function of

the invariant three-pion relative momentum, integrated over the total momentum of

the pion triplet as well as all other relative momentum components. It is obtained

by taking three pions from a single event, calculating Q3, and binning the results in

a histogram. B (Q3) is the analogous mixed event distribution which is computed by

taking single pions from three separate events.

Because the denominator of the normalized three-pion correlator r3 approaches

zero at large Q3, the particular method of normalization of C2 and C3 can have a

huge effect on the calculation. The propagation of statistical errors through the r3

functions, however, accounts for these effects completely. In fact, it is only with the

enormous statistics available from STAR that the calculation can be considered in

the range 0 < Q3 < 100 MeV/c. Though small, this range is large enough to provide

reliable extrapolation to Q3 = 0.
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4.2.2 Phase Space Cuts

The phase space cuts and experimental corrections applied are similar to the

two-pion HBT analysis as described in §3.4. Multiplicity classes were the same as

described in §3.3.4. For all multiplicity bins, tracks were constrained to have pT

in the range 0.125 < pT < 0.5 GeV/c, and pseudorapidity |η| < 1.0. In the range

0 < Q3 < 100 MeV/c, approximately 26 million triplets were included in both the

negative and positive pion central studies from ∼ 100,000 events.

4.2.3 Coulomb Correction

The three-particle Coulomb correction was applied by taking the product of three

two-pion corrections, obtained from the three possible pairs formed from the triplet.

This type of correction approximates the three-body Coulomb problem to first order

[35, 36]. A source size of 5 fm as suggested by the two-pion results was used for

all multiplicity bins [2]. Other methods to more accurately estimate the true three-

body Coulomb effect show a 5-10% difference for a source radius of 5 fm [37]. As

this difference is well within the systematic errors in the calculation of the three-pion

correlation function, this latter method was not used.

A systematic study of the variation in the C3 correlation function was done by

modifying the input radius to the Coulomb correction by ± 20 % from the standard

value of 5 fm. The results, shown in Figure 4.1, show that the C3 correlation function

varies little with respect to a change in the input Coulomb radius. This variation

is also canceled somewhat in the final r3 calculation, which involves a ratio of cor-

relation functions. The lower black curve in this plot shows C3 when no Coulomb
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Figure 4.1: Effect on the C3 correlation function of modifying the input radius to
the Coulomb correction algorithm. Shown is the correlation function for central π−

events. The upper curves represent C3 when the Coulomb radius is set to 4 fm (red
curve), 5 fm (standard value for analysis - black curve) and 6 fm (green curve). The

lower black curve is the C3 correlation function with no Coulomb correction.

correction has been applied, emphasizing the magnitude of the Coulomb potential on

the correlation function.

As implemented, the Coulomb correction is applied to every pion pair or triplet.

Since the correction only takes into account the momenta of the pions, all pions are

assumed to have been emitted near the collision region. This assumption fails for

pions that are created later on from the decay of long-lived resonances, since these

pions are already well separated from each other. Using the Coulomb correction on
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these pions would result in an artificial enhancement at low q values, affecting the

two-pion λ parameter and perhaps even r3.

To test this hypothesis, a study was performed [38] which examined the effect

on r3 when the Coulomb correction was mis-applied to long-lived resonances. In

Figure 4.2, r3 is plotted using the Gamow Coulomb correction (a modified form of

the standard Coulomb correction in which the Coulomb source is assumed to be

point-like). The top plot shows the “perfect” result, in which the Coulomb potential

has been turned off in the simulation. The lower plot shows the result of applying the

Coulomb correction to all pions, including those from resonance decays. To obtain

the intercept value of r3, the critical number in this analysis, a quadratic fit is made

to the data as described later in §4.3.2. The plots show that the r3 intercept varies by

0.05 when the Coulomb correction is applied to resonance decays, a difference that

is within the error of fit. For the analysis of STAR data, the Coulomb correction

was applied to all pions, with the understanding that any effect that the Coulomb

correction of long-lived resonances would have on the r3 intercept would be within

the overall error of this value.

4.2.4 Experimental Cuts

As described in §3.3.2, effects of track splitting during reconstruction were elim-

inated through a topological cut based on the TPC pad row configuration of hits

composing a track, and track merging was corrected with a requirement on the mini-

mum separation of a pair of tracks entering the TPC. For C3, the stipulation was that

for any pair within the triplet, if the pair entrance separation was less than 2.5 cm,
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Figure 4.2: Simulation of effect of mis-applying the Coulomb correction to pions
emitted from the decay of long-lived resonances. The upper plot shows the result

with the Coulomb potential turned off, and the lower plot shows the result of
applying the Coulomb correction to all pions, including those emitted from η, η′, K0

S

and Ω− decays.
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Figure 4.3: Effect on r3 of varying the entrance separation cut on pion pairs and
triplets. The curves show entrance separation cuts of 1.5 cm (red), 2.0 cm (black),

2.5 cm (standard value - green), 3.0 cm (blue) and 3.5 cm (purple). The variation of
the datapoints was used to calculate the systematic error.

the triplet was rejected. Figure 4.3 shows the variation in r3 as the entrance separa-

tion cut is varied from 1.5 cm to 3.5 cm. This effect is small due to the cancellation

that occurs in the ratio of correlation functions according to equation (4.8), however

the point by point variation was taken into account in the overall systematic error.

4.2.5 Momentum Sectoring

In a typical central event, approximately 300 pions pass all phase-space cuts and

are accepted for the creation of pion triplets. If all pions were considered, this would
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amount to over 4.4 million pion triplets, most of which have a Q3 value outside of

the momentum interval of interest (0 < Q3 < 100 MeV). For mixed-event triplets,

the number is even larger, 27 million triplets if they are formed from three events

with 300 pions per event. This is to be compared to two-pion HBT, in which the

number of pion pairs for the same event size is 44850, a factor of 100 difference.

Triplets and pairs take roughly the same amount of time to be processed, meaning

that an analysis of two-pion HBT that takes several hours will take the equivalent

three-particle analysis several days!

Needless to say, not much analysis would be accomplished if this were the way to

work with three-particle correlations. An alternative method [39] is to accept only

those triplets with low Q3 values. To accomplish this, particle tracks were grouped

according to their location in momentum space. 3-dimensional sectors of momentum

space were thus created and used to create pion triplets only among particles within

a particular sector. To avoid edge effects at the sector boundaries, particles were also

mixed with those from adjacent sectors. In this way, none of the lowest Q3 triplets

were missed.

The benefits of this approach are invaluable when comparing the computing times

of the different methods. For the momentum sectoring method, in which momentum

space is split into 1000 bins across 10 divisions in px, py and pz, 100,000 central

events can be analyzed in 1 day, while the previous method of accepting all triplets

would take 30 days. Sectors are 0.1 GeV wide in each momentum dimension across

a momentum range of −0.5 < pi < 0.5 GeV.

The effect of sectoring on the C3 correlation function can be seen in Figure 4.4.

With the bounds given as above, the sectored result (black curve) has a cutoff Q3
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C
3

Figure 4.4: Example of the effect of momentum sectoring on the C3 correlation
function. The black curve shows the sectored result and the grey curve shows the

non-sectored result.

value of 1.0 GeV, and then rises to meet the non-sectored result (grey curve) at 0.8

GeV. This drop in the sectored result is due to the fact that Q3 triplets are lost

because the particles that form the triplet are separated in momentum space by more

than one momentum sector bin. The two curves coincide at the smallest Q3 value in

which sectoring starts to fail to include every triplet with that particular Q3 value.

For 0.1 GeV bins, this value is 120 MeV, and even well past this value the two curves

are very close.
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4.3 Results from Year-1

4.3.1 C3 Correlation Function

Figure 4.5 shows the C3 correlation function for the highest multiplicity bin (π−

- (a), π+ - (b)), the middle multiplicity bin (π− - (c), π+ - (d)), and the lowest

multiplicity bin (π− - (e), π+ - (f)). A Gaussian parameterization is inadequate

to describe the actual correlation function; this is consistent with results obtained

in other experiments [40, 4, 3]. In calculating r3, the actual binned values of the

correlation function for the various values of Q3 are used instead of a fit [40]. In order

to use equation (4.7), triplets are obtained that pass all of the momentum space and

experimental cuts. Q3, Q12, Q23 and Q31 are calculated from the triplet and the three

pairs that can be formed from the triplet. The values C3 (Q3), C2 (Q12), C2 (Q23) and

C2 (Q31) are then computed from the binned two- and three-pion correlation functions.

These values are then used to calculate r3, which is then binned as a function of Q3.

The average for each bin is then calculated to obtain the final result. Systematic

errors are greatest at the low Q3 end due to merging effects and the uncertainty in

the Coulomb correction. The parameters controlling these effects were modified 20%

from the nominal values to obtain the overall systematic error in each bin.

4.3.2 Normalized Three-Particle Correlator

The results for the three multiplicity bins are shown in Figures 4.6 (π−) and 4.7

(π+), plotted as functions of Q2
3. The latter is suggested by the theoretical analysis in

[34] which shows that the leading relative momentum dependencies in the numerator

and denominator of equation (4.7) are quadratic1, allowing for a linear extrapolation
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Figure 4.5: Three-pion correlation function for central (π− - (a), π+ - (b)),
mid-central (π− - (c), π+ - (d)) and peripheral (π− - (e), π+ - (f)) events.

Statistical and statistical+systematic errors are shown.
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of the results shown in Figures 4.6 and 4.7 to Q3 = 0 by fitting them to the form

r3 (Q3) = r3(0) − ConstQ2
3. (4.10)

From Figures 4.6 and 4.7, it appears that the normalized three-pion correlator r3(Q3)

does indeed show a leading quadratic dependence up to at least Q2
3 = 6000 MeV2/c2.

The resulting intercepts r3(0) are shown in Figure 4.8, along with the results of

WA98 and NA44. NA44 reported a result close to unity for Pb-Pb interactions, but a

much lower result for S-Pb [3], both with no clear Q3 dependence. WA98 also reported

a result close to unity at Q3 = 0 for Pb+Pb, and the Q3-dependence in their result

is similar to what is seen in central collisions [4]. A qualitatively similar, but much

weaker relative momentum dependence of r3 has been shown to exist in calculations

by Nakamura and Seki for various parameterizations of chaotic sources [41]. In their

model the relative momentum dependence is of higher than quadratic order, and it

is an indication for an asymmetric source.

A detailed comparison of our data with Nakamura and Seki’s model calculations

is not possible due to our need for projecting the correlation functions on a single

relative momentum variable. This introduces a leading quadratic dependence of r3 on

Q3
1 which buries the expected higher order effects arising from possible asymmetries

of the emission function.

1For a fully chaotic source (ε = 1), the leading quadratic relative momentum dependencies in the
numerator and denominator of equation (4.7) cancel, if the ratio is taken pointwise in 9-dimensional
(p1,p2,p3) space (the phase Φ is quadratic and cos(Φ) is of fourth order in the relative momenta
[34]). If numerator and denominator are first projected on the single variable Q3, this cancellation
in the ratio is spoiled. For partially coherent sources there is no such cancellation to begin with
[34]. The parameterization (4.10) thus captures the expected leading Q3 dependence of the data (U.
Heinz, private communication).
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Figure 4.6: r3 calculation for (a) peripheral, (b) mid-central, and (c) central π−

events. The fits shown use equation (4.10) to determine the intercept. Statistical
and statistical+systematic errors are shown.

89



-0.5

0

0.5

1

1.5

-0.5

0

0.5

1

1.5

0 2000 4000 6000 8000 10000

-0.5

0

0.5

1

1.5

Q
2

3
(MeV /c )

2 2

(a)

(b)

(c)

2

3r

2

3r

2

3r

Figure 4.7: r3 calculation for (a) peripheral, (b) mid-central, and (c) central π+

events. The fits shown use equation (4.10) to determine the intercept. Statistical
and statistical+systematic errors are shown.
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Figure 4.8: Asymptotic value of r3 from STAR and two other experiments [3, 4].
For STAR, peripheral (a), mid-central (b), and central (c) results are shown for π−

(circular markers) and π+ (square markers) data. The other experiments use π−

data only.

4.3.3 Chaotic Fraction

Figure 4.9 shows the calculation of ε for STAR’s measurements, and for those

from WA98 and NA44. The plot shows a systematic trend in the STAR π− results

going from peripheral to central, however it is clear that more statistics are needed in

the peripheral case. The π+ results agree with those for π− for central events, but are

lower for the other two multiplicity classes. As the dependence of ε on the intercept

value of r3 is quite high near r3 = 1, small errors in the fit values of r3 can lead to

a large shift in the chaotic fraction measurement. However, for all centrality classes,

the fits and subsequent ε calculations show a highly chaotic source. It is important

to realize that this measure of chaoticity is unaffected by the value of the two-pion λ
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Figure 4.9: Chaotic fraction, calculated from equation (4.9), and plotted for the
same experiments as in Figure 4.8. For STAR, peripheral (a), mid-central (b), and
central (c) results are plotted for π− (circular markers) and π+ (square markers)

data.

parameter, which in the two-pion analysis has been shown to be less than 1 [2]. This

can be due to effects such as resonance contamination and multiple rescattering [40].

4.3.4 Fitting Method for r3 Intercept

In fitting the r3 functions to equation (4.10), two concerns are what fit range

should be used and whether equation (4.10) should be expanded to account for a

quartic term. Due to the large statistical errors in the r3 plots of Figures 4.6 and

4.7, the fit values shown in Figure 4.8 do not change when the fit range is extended

past Q3 = 120 MeV. However, a smaller fit range does change the r3 intercept fit

value according to the results in Tables 4.1 and 4.2. Clearly, the fit is weakened as

the fit range is decreased, yet the question of range is important since the quadratic

dependence may only be valid up to a certain value of Q3.
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Fit Range High End (MeV) π− Central π− Mid-Central π− Peripheral

120 0.962 ± 0.026 0.927 ± 0.027 0.805 ± 0.070
100 0.966 ± 0.026 0.927 ± 0.028 0.787 ± 0.071
80 0.990 ± 0.029 0.922 ± 0.030 0.838 ± 0.097
60 1.035 ± 0.042 0.846 ± 0.040 Fit Failed
40 1.035 ± 0.119 0.863 ± 0.127 Fit Failed

Table 4.1: Fit value of the r3

2
intercept for various fit ranges using the fit function of

equation (4.10). In each row, the fit range begins at 0 MeV. An entry of Fit Failed
signifies that the quadratic curve was inverted (turned up). The results are for π−

events.

Fit Range High End (MeV) π+ Central π+ Mid-Central π+ Peripheral

120 0.979 ± 0.027 1.011 ± 0.034 0.943 ± 0.062
100 0.982 ± 0.027 1.013 ± 0.034 0.928 ± 0.063
80 1.000 ± 0.029 1.016 ± 0.038 0.841 ± 0.083
60 1.042 ± 0.039 0.932 ± 0.060 0.731 ± 0.173
40 1.198 ± 0.097 0.839 ± 0.273 Fit Failed

Table 4.2: Same as Table 4.1 for π+ events.

To test the viability of equation (4.10) further, an extra quartic term is added to

create a new fit function:

r3 (Q3) = r3(0) − p1Q
2
3 + p2Q

4
3. (4.11)

At larger values of Q3, the quartic term will dominate, and so an ideal fit using

equation (4.11) would have a small error on the p2 term. Tables 4.3 shows the fit

values for the r3 intercept using equation (4.11) as the fit function and using a fit

range of 0 ≤ Q3 ≤ 120 MeV. In analyzing the fit values for other fit ranges, it turns

out that the error in the p2 coefficient is on the order of the value of the p2 coefficient

when the fit range high value is less than 80 MeV. For this reason, the quadratic
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Central Mid-Central Peripheral

π− 1.08 ± 0.048 0.865 ± 0.046 0.503 ± 0.144
π+ 1.07 ± 0.045 0.981 ± 0.065 0.750 ± 0.120

Table 4.3: r3

2
intercept values using equation (4.11) as the fit function and using the

fit range 0 ≤ Q3 ≤ 120 MeV.

fit describes the data well up to Q3 = 80 MeV, and then the quartic fit should be

used past that value. Since the primary result of the three-particle analysis hinges

on the result of whatever particular fit is used to find the intercept of the r3 curve, a

thorough understanding of the systematics of these fits is crucial in determining the

degree of chaoticity of the source.
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CHAPTER 5

CONCLUSION

HBT interferometry provides a direct probe of the geometric and dynamical prop-

erties of the freeze-out region in heavy-ion nuclear collisions. Using the enormous

statistics available at STAR, a high quality extraction of these freeze-out parameters

is possible, and their values can be easily compared to lower energy experiments.

STAR’s data has shown a source with large transverse flow and strong dependence

of the radius parameters on centrality. Still, these radius parameters and the extracted

lifetime show no increase from those obtained from much lower energy experiments

that would be indicative of a first-order phase transition. The Quark Gluon Plasma

is expected to exhibit itself in the form of large source sizes and lifetimes, and so this

might be an indication that higher energy collisions are needed to reach this phase

transition.

Three-particle HBT expands on the two-particle theory by introducing a measur-

able quantity, the normalized three-pion correlator, which is directly sensitive to the

quantum particle production phase of the outgoing particles. Since the theory upon

which the two-particle analysis is based assumes a source with completely random

phases on the outgoing particles, a direct experimental measurement of the three-

pion correlator is a necessary check of the logic of the two-particle analysis. STAR’s
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three-pion analysis data suggest a strongly chaotic source at all centralities, a crucial

ansatz if any of the two-pion results are to be believed in terms of the theory.

Analysis of STAR’s Year-2 run of 100 GeV Au+Au and p+p collisions will provide

a measurement of a system at higher energy densities, and the installation of the

completed Silicon Vertex Tracker will aid in the measurement of low momentum

particles and the detection of secondary decay vertices. The results obtained during

this run will lay the groundwork for upcoming physics running at the Large Hadron

Collider at CERN.
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